Modelling Geometric Objects with ISO 15926

Geiza Hamazaki Bruno Lopes

Departamento de Informática Aplicada
Universidade Federal do Estado do Rio de Janeiro

Instituto Tecgraf de Desenvolvimento de Software Técnico-Científico
Pontifícia Universidade Católica do Rio de Janeiro

Departamento de Informática
Pontifícia Universidade Católica do Rio de Janeiro

September 2014
Actual problems Oil and Gas Industry

- Scenarios are replaced in 3-4 years
- Projects lifecycle last more then 10 years

Owner, Manufactures, Engineering Contractors and Operators may use different Platforms
- Different project tools
- High-cost migration

NIST
US$15.8 billions for interoperability costs
Actual problems Oil and Gas Industry

- Scenarios are replaced in 3-4 years
- Projects lifecycle last more then 10 years

Owner, Manufactures, Engineering Contractors and Operators may use different Platforms
- Different project tools
- High-cost migration

NIST
US$15.8 billions for interoperability costs
Motivation

Actual problems Oil and Gas Industry

- Scenarios are replaced in 3-4 years
- Projects lifecycle last more then 10 years

Owner, Manufactures, Engineering Contractors and Operators may use different Platforms
- Different project tools
- High-cost migration

NIST
US$15.8 billions for interoperability costs
ISO 15926 - Industrial automation systems and integration—Integration of life-cycle data for process plants including oil and gas production facilities

Why use ISO 15926?

- Life-cycle description
- Flexibility and Extensibility
- Information context
- Validation
Motivation

ISO 15926

Data over Project Life Cycle (modified from Pawsey, 2012)
Nowadays...

Part 1: Overview and fundamental principles

Part 2: Data Model, it that represent information common to users and process plants. In Natural Language: Grammar

Part 3: Geometry and topology

Part 4: Reference Data Library (RDL). In Natural Language: The dictionary

Part 7: Templates. In Natural Language: It is equivalent to a phrase book
Nowadays...

Part 1: Overview and fundamental principles
Part 2: DataModel, it that represent information common to users and process plants. In Natural Language: Grammar
Part 3: Geometry and topology
Part 4: Reference Data Library (RDL). In Natural Language: The dictionary
Part 7: Templates. In Natural Language: It is equivalent to a phrase book
Nowadays...

Part 1: Overview and fundamental principles

Part 2: DataModel, it that represent information common to users and process plants. In Natural Language: Grammar

Part 3: Geometry and topology

Part 4: Reference Data Library (RDL). In Natural Language: The dictionary

Part 7: Templates. In Natural Language: It is equivalent to a phrase book
Nowadays...

Part 1: Overview and fundamental principles

Part 2: DataModel, it that represent information common to users and process plants. In Natural Language: Grammar

Part 3: Geometry and topology

Part 4: Reference Data Library (RDL). In Natural Language: The dictionary

Part 7: Templates. In Natural Language: It is equivalent to a phrase book
Nowadays...

Part 1: Overview and fundamental principles

Part 2: DataModel, it that represent information common to users and process plants. In Natural Language: Grammar

Part 3: Geometry and topology

Part 4: Reference Data Library (RDL). In Natural Language: The dictionary

Part 7: Templates. In Natural Language: It is equivalent to a phrase book
Nowadays...

Part 8: OWL implementation of the Templates. In Natural Language: It is like paper in a book, or a computer file

Part 9: Implementation standards, with the focus on Façades, standard web servers, web services, and security

Part 10: Formally named Implementation Methods for the Integration of Distributed Systems: Abstract Test Methods (draft)

Part 11: Industrial Usage Guidelines
Nowadays...

Part 8: OWL implementation of the Templates. In Natural Language: It is like paper in a book, or a computer file

Part 9: Implementation standards, with the focus on Façades, standard web servers, web services, and security

Part 10: Formally named Implementation Methods for the Integration of Distributed Systems: Abstract Test Methods (draft)

Part 11: Industrial Usage Guidelines
Nowadays...

Part 8: OWL implementation of the Templates. In Natural Language: It is like paper in a book, or a computer file

Part 9: Implementation standards, with the focus on Façades, standard web servers, web services, and security

Part 10: Formally named Implementation Methods for the Integration of Distributed Systems: Abstract Test Methods (draft)

Part 11: Industrial Usage Guidelines
Nowadays...

Part 8: OWL implementation of the Templates. In Natural Language: It is like paper in a book, or a computer file

Part 9: Implementation standards, with the focus on Façades, standard web servers, web services, and security

Part 10: Formally named Implementation Methods for the Integration of Distributed Systems: Abstract Test Methods (draft)

Part 11: Industrial Usage Guidelines
Defining objects

Template methodology

Complex objects must be defined as templates.

Part 3

A huge library of basic geometric terms.
Defining objects

Template methodology

Complex objects must be defined as templates.

Part 3

A huge library of basic geometric terms.
Identifying Part 3 elements

Circle definition in Part 3

An object is a **circle** if and only if: 1-it is **curve**; 2-it lies in a **plane**; 3- there is a centre point that is equi-distant from each point in the curve.

NOTE 2 A **circle** has the geometric properties: radius; center and plane. These properties can be given for a **circle** by a **axial_reference_placement** and a **radius**. A **circle** has two alternative values for the **axial_reference_placement** corresponding to opposite directions for the normal.
Identifying classes

Which templates are necessary?
Identifying classes

Which templates are necessary?
Modeling process steps

Definition of the signature, that describes the elements that compound the relationship;

<table>
<thead>
<tr>
<th>Order</th>
<th>Rule</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>hasProperty</td>
<td>Property</td>
</tr>
<tr>
<td>2</td>
<td>valPropertyValue</td>
<td>ExpressReal</td>
</tr>
<tr>
<td>3</td>
<td>hasScale</td>
<td>Scale</td>
</tr>
</tbody>
</table>
Modelling process steps

Definition of Axioms/Sentences in First Order Logic (FOL), that describes the semantics through the relations between the elements presented in the signature.

Axiom

\[
\text{RealMagnitudeOfProperty}(x_1, x_2, x_3) \iff \\
\text{property}(x_1) \land \text{ExpressReal}(x_2) \land \text{scale}(x_3) \land \\
\exists u \ (\text{MagnitudeOfProperty}(x_1, u, x_3) \land \\
\text{IdentificationByNumber}(x_2, u))
\]
RealMagnitudeOfProperty

The template **RealMagnitudeOfProperty** is used to connect a concept classified as a **property** with a numeric value and a **scale**.

Signature

<table>
<thead>
<tr>
<th>Order</th>
<th>Rule</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>hasProperty</td>
<td>Property</td>
</tr>
<tr>
<td>2</td>
<td>valPropertyValue</td>
<td>ExpressReal</td>
</tr>
<tr>
<td>3</td>
<td>hasScale</td>
<td>Scale</td>
</tr>
</tbody>
</table>

Axiom

\[
\text{RealMagnitudeOfProperty}(x_1, x_2, x_3) \leftrightarrow \\
\text{property}(x_1) \land \text{ExpressReal}(x_2) \land \text{scale}(x_3) \land \\
\exists u \ (\text{MagnitudeOfProperty}(x_1, u, x_3) \land \\
\text{IdentificationByNumber}(x_2, u))
\]
RealMagnitudeOfProperty

The template **RealMagnitudeOfProperty** is used to connect a concept classified as a *property* with a numeric value and a *scale*.

Signature

<table>
<thead>
<tr>
<th>Order</th>
<th>Rule</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>hasProperty</td>
<td>Property</td>
</tr>
<tr>
<td>2</td>
<td>valPropertyValue</td>
<td>ExpressReal</td>
</tr>
<tr>
<td>3</td>
<td>hasScale</td>
<td>Scale</td>
</tr>
</tbody>
</table>

Axiom

\[
\text{RealMagnitudeOfProperty}(x_1, x_2, x_3) \iff \\
\text{property}(x_1) \land \text{ExpressReal}(x_2) \land \text{scale}(x_3) \land \\
\exists u \ (\text{MagnitudeOfProperty}(x_1, u, x_3) \land \\
\text{IdentificationByNumber}(x_2, u))
\]
RealMagnitudeOfProperty

The template RealMagnitudeOfProperty is used to connect a concept classified as a property with a numeric value and a scale.

Signature

<table>
<thead>
<tr>
<th>Order</th>
<th>Rule</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>hasProperty</td>
<td>Property</td>
</tr>
<tr>
<td>2</td>
<td>valPropertyValue</td>
<td>ExpressReal</td>
</tr>
<tr>
<td>3</td>
<td>hasScale</td>
<td>Scale</td>
</tr>
</tbody>
</table>

Axiom

RealMagnitudeOfProperty(x₁, x₂, x₃) ↔

property(x₁) ∧ ExpressReal(x₂) ∧ scale(x₃) ∧

∃u (MagnitudeOfProperty(x₁, u, x₃) ∧ IdentificationByNumber(x₂, u))
Modelling a circle

ISO 15926

Modelling Geometry in ISO 15926

September 2014
GeometryRadiusTemplate

Property Range
- l
- z
- w

Scale
- j

GeometryMetric SpaceLength
- k

GeometryObjectWithRadius
- x

RealMagnitude OfProperty Range
- y

LowerUpper MagnitudeOf PropertyRange
- 1000
- 1000

mycircle
- 3,0
<table>
<thead>
<tr>
<th>Order</th>
<th>Rule</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>hasPossessor</td>
<td>ObjectWithRadius</td>
</tr>
<tr>
<td>2</td>
<td>hasRadius</td>
<td>RealNumber</td>
</tr>
<tr>
<td>3</td>
<td>hasLowerBound</td>
<td>RealNumber</td>
</tr>
<tr>
<td>4</td>
<td>hasUpperBound</td>
<td>RealNumber</td>
</tr>
</tbody>
</table>
RadiusTemplate\((x, y, z, w) \leftrightarrow \)
\[
\text{ObjectWithRadius}(x) \land \text{RealNumber}(y) \land \text{RealNumber}(z) \land \text{RealNumber}(w) \land \exists m (\text{radius}(m) \land \text{hasEnd1}(m, x_1) \\
\land \text{hasEnd2}(m, k)) \land \\
\exists k (\text{metric_space_length}(k) \land \exists j (\text{Scale}(j) \land \exists \ell (\text{PropertyRange}(\ell) \land \\
\text{LowerUpperMagnitudeOfPropertyRange}(\ell, j, z, w) \land \\
\text{RealMagnitudeOfProperty}(k, y, j))) \land \\
\exists p (\text{MappingTriple}(m, x, k) \land \text{radius}(p)))
\]
AxialReferencePlacementTemplate\((q, p_x, p_y, p_z, d_x, d_y, d_z) \leftrightarrow \)
ObjectWithAxialReferencePlacement\((q) \land \exists k (\)
 \text{axis1_placement}(k) \land
 \text{ReferencePointTemplate}(k, p_x, p_y, p_z) \land
 \text{ReferenceDirectionTemplate}(k, d_x, d_y, d_z) \land
 \exists p (\text{MappingTriple}(p, q, k) \land
 \text{axial_reference_placement}(p))) \)
GeometryAxialReference PlacementTemplate
Further work

- Implement tools:
 - for domain experts
 - for users
- Develop ISO 15926 research subjects
Tools

Template Expander expands FOL definitions to basic terms

iRing Tools interoperate data in a ISO 15926-like approach

.15926 an environment to build and manipulate ISO 15926 compliant data

15926:8 OWL visualization

FOL2OWL translates FOL template axioms to OWL
Modelling Geometry in ISO 15926

September 2014 22 / 22